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Selective Adsorption of Organosulfur

Compounds from Transportation

Fuels by p-Complexation
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ABSTRACT

Ab initio molecular orbital (MO) calculations were performed on the

adsorption bond energies between the main sulfur compounds and the

Cuþ on CuCl and CuY zeolite, for desulfurization of transportation fuels

by p-complexation sorbents. The relative adsorption bond energies of

these compounds were measured by the elution order, based on the break-

through curves of these compounds, from a column of CuY zeolite using

commercial diesel and gasoline as the influents. The order from the

elution followed: 4,6-dimethyldibenzothiophene � dibenzothiophene .

benzothiophene � 2-methylthiophene . thiophene. The order is in agree-

ment with that predicted from the calculations. The calculated values for

benzene and thiophene were also in excellent agreement with the
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ORDER                        REPRINTS

measured values that we reported earlier. The methyl and benzo groups

have an electron-donating effect on the aromatic rings that undergo

p-complexation. For the sulfur compounds, the thiophene ring was

bonded to Cuþ. For p-complexation on both CuY and CuCl, the amount

of electron forward donation was more than that of electron back donation

for thiophenic adsorbates, but the reverse was true for benzene and

toluene.

Key Words: Organosulfur compounds; Transportation fuels;

p-Complexation; Adsorption bond.

INTRODUCTION

Deep desulfurization of transportation fuels (gasoline, diesel, and jet fuels)

is beingmandated byUS and foreign governments, and is also needed for future

fuel cell applications. However, it is extremely difficult and costly to achieve

with the current technology, which requires catalytic reactors operated at

high pressure and temperature. Recently, it was found that adsorption by

p-complexation can be used effectively for deep desulfurization of transport-

ation fuels at ambient temperature and pressure.[1 –5] For example, by using

1–2 g of Cu(I)Y zeolite added by a thin layer of guard bed of activated carbon

at room temperature, 34 cm3 of clean diesel (at,0.2 ppmwS) can be obtained

from a commercial diesel (with 430 ppmwS). The Cu(I)Y is regenerable.

The starting point of this work was the finding that the p-complexation

bond between Cu(I)Y and thiophene is stronger than that between Cu(I)Y

and benzene. The transportation fuels each contain over 150 different com-

pounds. They are desulfurized in the refineries by hydrodesulfurization

(HDS). HDS is effective in removal of mercaptans, sulfides, and disulfides,

but is not effective in removal of the thiophenic compounds. Thus, the sulfur

compounds in transportation fuels are thiophenic compounds. The main sulfur

compounds are thiophene, 2-methylthiophene, benzothiophene, dibenzothio-

phene, 4-dimethyldibenzothiophene, and 4,6-dimethyldibenzothiophene.

The latter two are particularly problematic for HDS, because the two methyl

groups sterically hinder their chemisorption on the Mo sites (on the CoMo

catalyst). Hence, these two compounds are referred to as “refractory” sulfur,

and are the two most predominant sulfur compounds in diesel and jet fuels.

The transportation fuels contain, very approximately, 70–80% alkanes and

the balance is aromatics.[6] For adsorption, particularly by p-complexation,

aromatics offer the most competition for the thiophenic compounds. There-

fore, benzene and thiophene were used as a model pair for testing sorbents

for desulfurization.
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In the development of the adsorption technology for desulfurization, and

also for a basic understanding of the adsorption process, a crucially important

question is on the relative bonding strengths, or selectivities, of the different

sulfur compounds for adsorption. The bond strengths can be measured

as the heats of adsorption. However, due to the high boiling points of these

compounds (e.g., 2218C for benzothiophene), such measurement is no trivial

matter.[7] In this work, we used molecular orbital (MO) theory to calculate the

relative bond energies with Cu(I)Y zeolite for: thiophene, 2-methylthiophene,

benzene, toluene, benzothiophene, dibenzothiophene, and 4,6-dimethyldibenzo-

thiophene. The results will shed light on the effects of the methyl and benzo

groups on the p-complexation bonds between CuY and the thiophene ring.

They will also shed light on the bonding mechanism. The relative bond

strengths, or the qualitative trend of the adsorption strengths, are verified by

the elution sequence from an elution column.

THEORETICAL SECTION

Ab Initio Molecular Orbital Computational Details

MO studies on the p-complexation bonding for thiophene and benzene on

sorbent surfaces and zeolites were investigated recently.[8 –10] In this work,

similar MO studies were extended to other related adsorbate: toluene,

2-methylthiophene, benzothiophene, dibenzothiophene, and 4,6-dimethyl-

dibenzothiophene. The Gaussian 98 package[11] and Cerius2 molecular mod-

eling software[12] were used for all MO calculations. Geometry optimizations

were performed at the Hartree-Fock (HF) level first, then natural bond orbital

(NBO) analysis was performed at density functional theory (DFT) level using

effective core potentials (ECPs).[13–16]

Density Functional Theory

DFT is an efficient tool for studying molecular properties of transition

metal compounds, it can provide an accurate description of the metal–ligand

interactions[17]at an affordable computational cost. In this work, a hybrid

method consisting of HF and DFT, known as the self-consistent hybrid (SCH)

approach or B3LYP[18,19] approach, was used. The B3LYP method can

provide reliable geometric, thermodynamic, and spectroscopic parameters

for metal–ligand interactions, ranging from covalent bonds to weak noncova-

lent interactions.[20–22] It is the combination of HF and Becke exchange[23]

with the Lee–Yang–Parr (LYP) correlation potential.[24]
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Effective Core Potentials

In this work, DFT calculations were performed at B3LYP level with the

LanL2DZ basis set.[25] The LanL2DZ basis set is a double-z basis set contain-

ing ECP representations of electrons near the nuclei for post-third-row atoms.

ECP is simply a group of potential functions that replace the inner shell elec-

trons and orbitals that are normally assumed to have minor effects on the for-

mation of chemical bonds. Calculations of the valence electrons using ECP

can be carried out at a fraction of the computational cost that is required for

an all-electron calculation, while the overall quality of the computation

does not differ significantly from the all-electron calculations.[13,14] The

reliability of this basis set was been confirmed by the accuracy of calculation

results as compared with experimental data. Therefore, the LanL2DZ basis set

was employed for all calculations, i.e., geometry optimization, NBO, and

frequency analysis.

Geometry Optimization and Bond Energy Calculations

Frequency analysis was used to verify that all geometry optimized struc-

tures were true minima on the potential energy surface. The optimized struc-

tures were then used for bond energy calculations according to the following

expression:

Eads ¼ Eadsorbate þ Eadsorbent ÿ Eadsorbent–adsorbate ð1Þ

where Eadsorbate is energy of free adsorbate, Eadsorbent is energy of free adsor-

bent, and Eadsorbent – adsorbate is energy of the adsorbate/adsorbent system.

A higher value of Eads corresponds to a stronger adsorption.

Natural Bond Orbital

The optimized structures were also used for NBO analysis at the B3LYP/
LanL2DZ level. The NBO analysis performs population analysis that pertains

to localized wave-function properties. It gives a better description of the elec-

tron distribution in compounds of high ionic character, such as those contain-

ing metal atoms.[26] It is known to be sensitive for calculating localized weak

interactions, such as charge transfer, hydrogen, bonding, and weak chemisorp-

tion (which is the case of the subject of this study). Therefore, the NBO

program[27] was used for studying the electron density distribution of the

adsorption system.
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Models for Cu Zeolite

The Cu zeolite (CuZ) model selected for this study is similar to the ones

used in our previous work[10,28] with the molecular formula of (HO)3Si–O–

Al(OH)3, and the cation Cuþ sits 2.14 Å above the bridging oxygen between

Si and Al. This is a good cluster model representing the chemistry of a uni-

valent cation bonded on site II (SII) of the faujasite framework (Z). Once

the optimized structure of CuZ is obtained at the HF/LanL2DZ level, then

an adsorbate molecule is added onto the Cu of zeolite model, and the resulting

structure is further optimized at the HF/LanL2DZ level.

EXPERIMENTAL

Cu(I)Y [or reduced Cu(II)Y] was prepared by first ion exchanging Na Y

with a Cu(NO3)2 aqueous solution (0.5M) for 48 hr followed by reduction of

Cu2þ to Cuþ. More details about sorbent preparation, including autoreduction

of the copper ions, can be found in previous reports.[1–5,8–10]

All adsorption/breakthrough experiments were performed in a vertical,

custom-made quartz adsorber equipped with a supporting glass frit. More

details can be found elsewhere.[1 –5] After activation treatment, the adsorbent

under study was allowed to cool down to room temperature under inert gas and

then tapped to ensure proper packing. Next, a sulfur-free hydrocarbon was

allowed to flow through the sorbent to remove entrapped gases. After wetting

the adsorbent for several minutes, the feed was switched to either commercial

grade gasoline (379.7 ppmwS) or diesel (297.2 ppmwS) at constant flow

rates. Effluent samples were collected at regular intervals and sulfur break-

through curves were obtained using a gas chromatography/flame photometric

detector (GC–FPD).

GC–FPD peaks identification information for sulfur compounds present

in gasoline and diesel was gathered after using standards and by retention

time comparison with data available in Refs.[1 –5]. For standards, thiophene,

BT, and DBT solutions were diluted in sulfur-free n-octane to a known

concentration and then injected for retention time determination.

RESULTS AND DISCUSSION

Optimized Geometries

The optimized structures of adsorbents, CuCl and CuZ, are shown in

Fig. 1, and those of the adsorbates are shown in Figs. 2 and 3. There are several

Adsorption of Organosulfur Compounds from Transportation Fuels 1721
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known coordination geometries of thiophene in organometallic complex,[29]

however, to compare p-complexation strengths between thiophenic com-

pounds and benzene type of compounds, only the h5 geometry was consi-

dered in this study, where the aromatic ring is placed horizontally on top

of Cuþ. The optimized structures of the adsorption complex are shown in

Figs. 4–6. For CuCl, all adsorbates remained horizontal on top of Cuþ

after optimization, but that not the case for CuZ, where all adsorbates were

in a tilted position.

A summary of bond distance in Å between Cu and the bridging oxygen in

CuZ, and Cu and Cl in CuCl, is listed in Table 1. For free CuZ and CuCl, the

bond distances were 2.14 and 2.21 Å. This indicates that the zeolite anion is

more electronegative than chloride anion. The bond distance between Cu

and Cl in CuCl complex remained unchanged after an thiophenic adsorbate

Figure 1. Optimized structures of adsorbents: Cu Zeolite and CuCl.

Figure 2. Optimized structures of adsorbates: thiophene and benzene.
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was added onto the Cu, and increased slightly when a benzene or a toluene was

added. The bond distance between Cu and oxygen in CuZ complex increased

for all adsorbates.

A summary of bond distance in Å between Cu and S in thiophenic mol-

ecules and C in benzene type of molecules is given in Table 2. For CuCl, the

distance between Cu and S for all thiophenic adsorbates was 2.5 Å, and

the distance between Cu and C for both benzene and toluene was 2.8 Å.

For CuZ, the distance between Cu and S of the adsorbate was 2.5 Å for all

thiophenic adsorbates, and increased to 2.7 Å for benzene and 2.8 Å for

toluene.

Figure 3. Optimized structures new adsobates: 2-methylthiophene, toluene, benzo-

thiophene, dibenzothiophene, and 4,6-dimethyldibenzothiophene.

Adsorption of Organosulfur Compounds from Transportation Fuels 1723
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Bond Energies

The energies of adsorption calculated using Eq. (1) for thiophene, ben-

zene, and their derivatives are summarized in Table 3.

The increase in energy of adsorption from thiophene to 2-methylthio-

phene in both CuZ and CuCl can be explained by the electron-donating

effect of the methyl group to the aromatic ring. Such an increase is also

expected in going from benzene to toluene, which is seen for both CuCl

and CuZ. In going from thiophene to benzothiophene to dibenzothiophene

Figure 4. Optimized structures of thiophene and benzene on CuZeolite and

CuCl.

Yang, Hernandez-Maldonado, and Yang1724
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to 4,6-dibenzothiophene, one would also expect to find an increasing trend

for energies of adsorption, since additional benzene ring(s) and methyl

groups would increase aromaticity, thus enhance the p-complexation.

Such an increasing trend was indeed seen in case of CuCl; but in case of

CuZ, the increasing trend stoped at dibenzothiophene. The energy of adsorp-

tion for 4,6-dibenzothiophene was essentially the same as that of dibenzo-

thiophene. It is possible that the two methyl groups can form steric

hindrance between adsorbates and CuZ, and this steric effect plays a larger

role than the electron-donating effect.

Figure 5. Optimized structures of 2-methylthiophene and toluene on CuZeolite and

CuCl.
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D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
0
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



ORDER                        REPRINTS

Column Elution Results

Figures 7 and 8 show adsorption breakthrough curves for individual organo-

sulfur compounds in Cu(I) Y zeolites for gasoline and diesel feeds, respectively.

For the former, the breakthrough order was thiophene . 2-methylthiophene .

benzothiophene. This order agrees excellently with the data shown in Table 3,

Figure 6. Optimized structures of benzothiophene, dibenzothiophene, and 4,6-

dimethyldibenzothiophene on CuZeolite and CuCl.

Yang, Hernandez-Maldonado, and Yang1726
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since molecules having higher adsorption energies are expected to remain inside

the zeolite cages for longer periods of time. In addition, notice that the selectivity

between 2-methylthiophene, dibenzothiophenes, and the adsorbent was not sig-

nificantly demarcated, which also agrees with the MO calculations data.

Since commercial gasoline fuels do not contain dibenzothiophenes and their

derivatives (because these are found in higher boiling point fuels), we also

analyzed sulfur removal fromdiesel fuels.Desulfurization of a commercial diesel

fuel with Cu(I)Y zeolites resulted in the breakthrough curves shown in Fig. 8.

Breakthrough followed the order: benzothiophene . dibenzothiophene . 4,6-

dimethyldibenzothiophene. When comparing the adsorption behavior between

dibenzothiophene, and 4,6-dimethyldibenzothiophene it is apparent the latter

adsorbs stronger than the former. Refractory compounds, such as 4,6-dimethyl-

dibenzothiophene, are themost abundant in diesel fuels since they remain largely

unaffected by current commercial HDS treatments. Thus, these are expected to

displace the other thiophenic compounds and adsorb in largest quantities.

Table 1. Bond distance in Å between Cu and the bridging oxygen

in CuZ and Cu and Cl in CuCl.

Adsorbate CuZ CuCl

Free 2.14 2.21

Thiophene 2.17 2.21

Benzene 2.17 2.23

2-Methylthiophene 2.22 2.21

Toluene 2.16 2.22

Benzothiophene 2.23 2.21

Dibenzothiophene 2.22 2.21

4,6-Dimethyldibenzothiophene 2.15 2.21

Table 2. Bond distance in Å between Cu and S in thiophenic

molecules and C in benzene type of molecules.

Adsorbate CuZ CuCl

Thiophene 2.50 2.48

Benzene 2.69 2.84

2-Methylthiophene 2.49 2.48

Toluene 2.83 2.84

Benzothiophene 2.49 2.48

Dibenzothiophene 2.49 2.48

4,6-Dimethyldibenzothiophene 2.49 2.48
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More information about desulfurization of both gasoline and diesel fuels via

p-complexation can be found elsewhere.[1–5]

NBO Results

The nature of the adsorbent–adsorbate bonding can be further understood

by analyzing the NBO results shown in Tables 4 and 5. When an adsorbate

molecule approaches the Cu cation, some electronic charge is transferred

Table 3. Energy of adsorption in (kcal/mol) for different adsorbates.

Adsorbate DE on CuZ DE on CuCl Exptl. DE

Thiophene 21.4 (10) 13.5 20.8–22.4 (10)

2-Methylthiophene 22.4 15.9

Benzene 20.5 (10) 12.4 19.3–21.8 (10)

Toluene 21.5 15.3

Benzothiophene 22.9 16.2

Dibenzothiophene 23.6 17.1

4,6-Dimethyldibenzothiophene 23.5 18.4

Figure 7. Breakthrough of thiophene (4) or 2-methylthiophene (O) or benzothio-

phene (W) in a fixed-bed adsorber of Cu(I)Y adsorbent, for gasoline feed at room

temperature. Cj is the sulfur concentration in the feed for each species.
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from the aromatic ring p-orbital to the valence 4s orbital of Cu cation, at the

same time, electrons in the filled 3d orbitals of Cu cation are transferred to the

symmetry-matched p� orbital of the aromatic ring.

As observed in both tables, upon adsorption, for all adsorbates, there was

an increase in the electron occupancies of the 4s orbital, and there was

decrease in the total electron occupancies of the 3d orbitals. This is caused

by the donation and back donation of electrons between Cu and the aromatic

Figure 8. Breakthrough of benzothiophene (W) or dibenzothiophene (†) or 4,6-

dimethyl-dibenzothiophene (V) in a fixed-bed adsorber with Cu(I) Y adsorbent, with

diesel feed at room temperature. Cj is the sulfur concentration in the feed for each

species.

Table 4. Summary of the NBO analysis of the p-complexation between different

adsorbates and CuCl.

Adsorbate

D4s

(s donation)

D3d (d–p�

back donation) Net change

Thiophene 0.092 20.046 0.046

2-Methylthiophene 0.097 20.048 0.050

Benzene 0.011 20.051 20.040

Toluene 0.012 20.050 20.038

Benzothiophene 0.101 20.049 0.052

Dibenzothiophene 0.106 20.049 0.057

4,6-Dimethyldibenzothiophene 0.111 20.050 0.060
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ring(s). It is interesting to note that for both CuZ and CuCl, the amount of

electron forward donation was more than that of electron back-donation for

thiophenic adsorbates, but the reverse was true for benzene and toluene.

Since CuZ is a better adsorbent for thiophene than for benzene, this means

in p-complexation, the transfer of electronic charge from thiophenic ring is

more significant than that of benzene ring. Also in case of CuZ, with zeolite

being a stronger anion, the increase in the electron occupancies of the 4s

orbital was higher when compared to the increase for CuCl. A more electro-

negative anion can attract more electrons from the Cu cation bonded to it,

thus increasing the positive charge on Cu cation, and this Cu cation in turn

will be a better acceptor to form p-complexation with the adsorbates, this

explains why CuZ is a better adsorbent.
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